BPSO Optimized K-means Clustering Approach for Data Analysis

نویسندگان

  • Juhi Gupta
  • Aakanksha Mahajan
  • Nikhil Kushwaha
  • Vimal Singh Bisht
  • Gautam Shah
  • Tarun Kumar Sharma
  • Millie Pant
  • Vipul Sharma
  • S. S. Pattnaik
  • Tanuj Garg
  • Youguo Li
  • Haiyan Wu
  • Sunita Sarkar
  • Arindam Roy
  • Bipul Shyam Purkayastha
  • Gautam Mahapatra
  • Soumya Banerjee
چکیده

However, there exist some flaws in classical K-means clustering algorithm. First, the algorithm is sensitive in selecting initial centroids and can be easily trapped at a local minimum with regards to the measurement (the sum of squared errors). Secondly, the KM problem in terms of finding a global minimal sum of the squared errors is NP-hard even when the number of the clusters is equal to 2 or the number of attributes for data point is 2, so finding the optimal clustering is believed to be computationally intractable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Persistent K-Means: Stable Data Clustering Algorithm Based on K-Means Algorithm

Identifying clusters or clustering is an important aspect of data analysis. It is the task of grouping a set of objects in such a way those objects in the same group/cluster are more similar in some sense or another. It is a main task of exploratory data mining, and a common technique for statistical data analysis This paper proposed an improved version of K-Means algorithm, namely Persistent K...

متن کامل

A Clustering Based Location-allocation Problem Considering Transportation Costs and Statistical Properties (RESEARCH NOTE)

Cluster analysis is a useful technique in multivariate statistical analysis. Different types of hierarchical cluster analysis and K-means have been used for data analysis in previous studies. However, the K-means algorithm can be improved using some metaheuristics algorithms. In this study, we propose simulated annealing based algorithm for K-means in the clustering analysis which we refer it a...

متن کامل

BPSO Optimized K means Clustering Approach for Medical Data Analysis

Data mining plays a very important role in the analysis of diseases and clustering approach makes it easier to classify the data collected in respective groups. Medicine companies and medical appliance manufacturer are benefitted from these data analysis. Now a days, this is done at a very large scale and has been named as big data analysis in which data size is of many terabytes. Optimization ...

متن کامل

Fuzzy Clustering Approach Using Data Fusion Theory and its Application To Automatic Isolated Word Recognition

 In this paper, utilization of clustering algorithms for data fusion in decision level is proposed. The results of automatic isolated word recognition, which are derived from speech spectrograph and Linear Predictive Coding (LPC) analysis, are combined with each other by using fuzzy clustering algorithms, especially fuzzy k-means and fuzzy vector quantization. Experimental results show that the...

متن کامل

Modification of the Fast Global K-means Using a Fuzzy Relation with Application in Microarray Data Analysis

Recognizing genes with distinctive expression levels can help in prevention, diagnosis and treatment of the diseases at the genomic level. In this paper, fast Global k-means (fast GKM) is developed for clustering the gene expression datasets. Fast GKM is a significant improvement of the k-means clustering method. It is an incremental clustering method which starts with one cluster. Iteratively ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016